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LETI’ER TO THE EDITOR 

Kinetics of multilayer adsorption: Monte Carlo studies of 
models without screening 
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Institut fur Physik, Johannes-Gutenberg-Universitat Mainz, Staudinger Weg 7, D-6500 
Mainz, Federal Republic of Germany 

Received 25 September 1990 

Abstract. New I D  and 2~ lattice models are introduced to study irreversible multilayer 
adsorption processes observed in recent experiments in colloid systems. Kinetics of deposi- 
tion without screening (with no overhangs) is investigated by Monte Carlo simulations. 
The approach to the jamming coverage in each layer is asymptotically exponential. The 
jamming coverages approach the infinite-layer limiting value according to a power law, 
reminiscent of critical phenomena, with no length scale, and with exponent universality 
within the accuracy of the numerical data. 

Irreversible deposition in monolayers has attracted significant theoretical effort [ 1-16]. 
Experiments in which the relaxation timescales are much longer than the times of the 
formation of the deposit include the adhesion of proteins and colloidal particles on 
uniform surfaces, as well as certain other systems [17-211. Recent theoretical [22] and 
experimental [ 23,241 results suggest that in packed-bed colloid experiments multilayer 
adhesion can be studied systematically. 

Theoretical description of the statistical mechanics of multilayer deposition has 
been limited to the mean-field theory [22,25] and certain rate-equation approximations 
in the I D  deposition models [25]. In this work we report the first systematic Monte 
Carlo study of the irreversible deposition in multilayers. We consider I D  and 2~ models 
without screening (to be defined below). 

In irreversible deposition, the most profound correlations are due to the blocking 
by the already deposited particles of the available area for deposition of new particles. 
This infinite-memory effect was studied extensively in the monolayer case [ 1-16], under 
the term ‘random sequential adsorption’. The deposition process stops at a certain 
jamming coverage which is less than close-packing. The blocking also plays an impor- 
tant role in the higher-layer particle-on-particle deposition [25]. 

Another effect present only in the multilayer case is the screening of the lower 
layers by the particles in the higher layers. However, the screening becomes important 
only for a very large number of layers [25]. Models without blocking but with screening 
allowed, fall in the class of the ballistic deposition [26] or diffusion-limited aggregation 
[27], depending on the mechanism of the particle transport to the surface. These and 
related systems were studied extensively with the recent emphasis on the growing- 
surface scaling properties after many layers have been deposited [26,27]. 
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However, the experimental situation in colloid system [18,23,24] seems to corre- 
spond to the regime of sufficiently few layers (order 10) in the deposit so that the 
dominant correlation effects are due to the blocking [25]. Thus, in this work we consider 
the extreme case of no screening at all. 

We study the deposition of kmers of length k on the linear periodic I D  lattice of 
spacing 1, and the deposition of square-shaped ( k  x k)mers on the periodic square 
lattice of unit spacing in ZD. The deposition site is chosen at random, i.e. for a linear 
lattice of size L, we randomly select landing sites of length k The timescale, t, is fixed 
by having exactly L deposition attempts per unit time. If all the lattice segments in 
the selected landing site are already covered by exactly ( n  - 1) layers, the arriving 
kmer is deposited, increasing the coverage to n ( n  2 1). Otherwise, the attempt is 
rejected. Thus, only deposition on the fully occupied regions without gaps is allowed. 
This rule therefore completely eliminates overhangs and corresponds to no screening. 
In two dimensions, the landing sites are ( k  x k )  squares, and the deposition in layer 
n is successful only if all the k2 lattice unit-squares are already covered by exactly the 
same number of layers, ( n  - 1). The attempt rate is defined by having L2 deposition 
attempts per unit time, for the 2~ lattice of size L x  L. 

There are several reasons for studying the deposition without screening. Our results 
suggest that for lattice models (unlike the continuum monolayer deposition models 
[5-71) the fraction of the occupied area in the nth layer, On( t ) ,  approaches the saturation 
value exponentially, 

e , ( t ) -  e,(m)+B, e-‘”. (1) 
where we omit the k dependence of various quantities. However, the jammed state in 
the higher layers in the deposition without overhangs contains more gaps the larger 
is the n value. The growth in the higher layers proceeds more and more via uncorrelated 
(i.e. separated by gaps) ‘towers’. An important issue is whether this loss of correlations 
in the overall growth pattern has an intrinsic length scale associated with it. Our results 
indicate that this is not the case. Specifically, we find that the jamming coverages vary 
according to a power law, with no length scale, reminiscent of critical phenomena, 

Another similarity with critical phenomena is that within the limits of the numerical 
accuracy the values of exponent 4 are universal for k 2 2  (see details below). 

In the computer simulation, configurations in ZD were represented by integer height 
variables at each lattice site, and they were updated according to the deposition rules 
defined earlier. In ID, a more efficient procedure was used in which the coordinates 
of the kmers were stored and updated. We studied systems of sizes up to L= lo5 in 
I D  and L x  L= 10002 in 2 ~ .  A comparison with results for smaller systems suggests 
that finite-size effects were negligible for the largest system sizes studied. The data 
were averaged over at least 40 runs (up to as many as 600 runs), with different random 
number sequences. Various Monte Carlo runs went up to times 150, in units defined 
earlier. Due to computer resource limitations, our study was restricted to k = 2 ,  3, 4, 
5 ,  10 in ID, and k = 2, 4 in 2 ~ .  

Figure 1 shows the variation of the coverage (fraction of the lattice sites occupied) 
for times tS35 ,  for the first 20 layers, for the 2~ system with k=2 .  Generally, ID  

results for k = 2,3,4,5,10 and ZD results for k = 4 have a qualitatively similar behaviour. 
For the monolayer ( n  = 1) in ID,  exact results for the coverage are available [4] for 
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Figure 1. Variation of the coverages in layers n = 1,2 , .  . . ,20  as functions of time, for the 
deposition of (2 x 2)mers on the square lattice. The monolayer coverage is the upper curve, 
and generally e , ( t ) < e , - , ( t ) ,  for each 1. These results were obtained on the lOOOx 1000 
lattice, and represent averages over 140 Monte Carlo runs. 

general k. Our numerical values were consistent with these exact results. For small t, 
the coverage increases according to e,,( t )  cc t", as expected from the mean-field theory 

For a given n, the coverage asymptotically saturates at the jamming value where 
there are no more landing sites available in that layer. The approach to the jamming 
limit is fitted well by the exponential time dependence (1). Numerical semilogarithmic 
least-squares fits yield decay constant values 7, = 1. Note that the exact monolayer 
value in I D  is T~ = 1. The exponential decay in 2~ agrees with the previous studies of 
the lattice monolayer deposition models, see, e.g., [ 131. Our numerical data were not 
accurate enough to study systematically the n dependence of the 7, values. As men- 
tioned, all the numerical T,, estimates were quite close to 1. For the monolayer deposition 
in 2 ~ ,  a qualitative analytical argument can be offered for 7, = 1, for any finite k. This 
development will be reported elsewhere. 

Our central new finding was that the jamming coverage as a function of the layer 
number, n, approaches the limiting value according to a power law (2). In order to 
estimate the exponent 4 and generally substantiate the power law n dependence, we 
plotted the differences in the jamming coverages, @,,(a) - e,+,(co), against n, on a 
double-logarithmic scale for all the k values studied. The resulting plots are shown in 
figure 2 for ID, and in figure 3 for 2 ~ .  The t = CO values of the coverages were 
approximated by the 6 , ( t )  at the largest t-values reached in the simulations. Only 
layers n for which a clear exponential convergence has been established (see, e.g., 
figure 1) were included. The double-logarithmic plots establish the power-law behaviour 
suggested in (2). We also tried various other fits, including the exponential n depen- 
dence. The power law is clearly favoured by the data. 

The slopes of the straight lines in figures 2 and 3 for large n estimate 4 + 1. With 
increasing k, the asymptotic behaviour sets in for larger n values. The lines shown 
were obtained by the least-squares fits for n a 15 in I D  and n 5 20 in 2 ~ .  Based on 

~251. 
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Figure 2. Power-law fit of the jamming coverages in layers up to n = 49 in the ID deposition 
of kmers, with k = 2 (V), k = 3 (O), k = 4 (0), k = 5 (A) ,  and k = 10 (+). The straight 
lines shown were obtained by the least-squares fits for n 2 15, and their slopes correspond 
to the C$ values 0.494, 0.571, 0.594, 0.588 and 0.584, for k = 2 ,  3, 4, 5 and 10, respectively. 
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Figure 3. Power-law fit of the jamming coverages in layers up to n = 69 in the 2D deposition 
of (k  x k)mers, with k = 2 (O), and k = 4 (A).  The straight lines shown were obtained by 
the least-squares fits for n 3 20, and their slopes correspond to the C$ values 0.463 and 
0.505, for k = 2 and 4, respectively. 
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these and other data fits we propose the overall estimates 

+( ID)  = 0.58 f 0.08 and 4 (2D) = 0.48 f 0.06. (3)  

Within the uncertainty of choosing reliable error limits on various numerical exponent 
estimates, the values of the exponent Q, appear universal for different k. 

In summary, we studied by numerical Monte Carlo simulations the asymptotic 
behaviour of the coverages in different layers for irreversible sequential multilayer 
deposition, with no overhangs allowed. The coverage in the nth layer builds up 
according to the mean-field 2" law for short times, and approaches the jamming value 
exponentially for long times (1). The jamming values for increasing layer number, n, 
have a power-law asymptotic behaviour ( 2 )  reminiscent of critical phenomena, with 
no length scales. The qualitative features of the data are the same in I D  and in 2 ~ .  

The authors wish to thank Professor Kurt Binder for helpful discussions, and to 
acknowledge the sponsorship of the Sonderforschungsbereich 262 of the Deutsche 
Forschungsgemeinschaft. 
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